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We introduce an approximate Roe type Riemann solver for the
numerical simulation of two-phase fluid flows composed of liquid
droplets suspended in gas. We compute a Roe linearization of some
well-conditioned approximate Rankine—Hugoniot relations in non-
conservation farm. The computed solutions are found to be in good
agreement with the exact solution in one dimension slab geometry.
We extend this solver to two-dimensional geometries using a finite
volume formulation. © 1995 Academic Press, Inc.

1. INTRODUCTION

We consider a two-phase fluid low composed of liquid drop-
lets suspended in a gas phase. The droplets are assumed incom-
pressible with constant mass density p, while the gas phase is
compressible. The gas flow around the droplets and the liguid
flow inside the droplets are respectively governed by compress-
ible and incompressible Navier-Stokes equations. However,
clouds of interest typically contain 10° to 10" droplets per
cubic meter and the free boundary problem cannot be solved.
Furthermore, we are not interested in the precise location of
droplets but in average quantities. We introduce in [1] an Euler
system modeling two-phase fluid flows, where each phase is
seen as a fluid described by macroscopic quantities.

We denote by « the volume fraction of the gas phase, p, the
gas mass density, o the liquid phase mass density, u, and w,
the average gas and liquid phase velocities, and by ¢, and g
the specific internal energies of the gas and liguid phases, re-
spectively.

Remark 1.1. For two phase flows of interest, the mass den-
sity p; of the liquid phase is very large in comparison with the
gas mass density p,. In cryogenic engines, for instance, the
liquid oxygen and gasecus hydrogen are injected in the engine
in proportions close to stoichiometry. Hence the Jiquid phase
volume fraction 1 — o is of order p,/p,. We restrict, hereafter,
ourselves to this situation.

The macroscopic Euler system that describes the flow is
obtained by averaging the Navier—Stokes equations governing

the flow at the microscopic scale. This procedure described in
[1] relies in particular on the assumption that the volume frac-
tion « is close to 1. Omitting the mass, impulsion, and energy
algebraic exchange terms between the two phases, the system
obtained in [1] reads:

dap)+ V-(apu) =0 (L1
dlapn) + V- (opu, Qu)) +aVp—V.o, =0 (1.1.11)
dlape) + V- (apen, + apu,)
+pV (1 ~au) - V(o) — V- (k, Ve, ) =0  (L1iii)
MU —p)+ V- (1 —adpm) =0  (L1iv)
31 — a)pm) + V- (1 — edpi(uy & up)
+(l-a)Vp+V0—-V-g/ =9 (1.1.v)
a{(l — aypey) + V- (1 — a)prepuy)
+ (= -Vp+V-(Au) - V-(ofu) =0. (L.1vi)

We have written the mass, impulsion, and energy conservation
equations for the gas phase and the liquid phase. The gas and
liquid phase specific total energies are

e, =g, +uli2, e =g +ujl2

while the pressures p and # are defined by

p=0~Dpe, 0=06(—-a¥

The constant 6, is proportional to the rest pressure of the gas
flow on the dropleis. We take 8, = 10000 Pascal in the sequel.
For two phase flows, we obtain that the exponent §is 6 = %
Finally the viscous stress tensors o and o) of the gas and
liquid phases are defined by

o, = NV, + Vul) + (& — )V -upl,
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and
oi = 7V, + Vuf),

where 7, = 9}(1 + 5(1 — @)/2) is the effective shear viscosity
coefficient of the gas and 1, is an effective viscosity coefficient
for the dispersed phase (distinct from the viscosity of the liquid),
taken as a constant. Here 7} and {2 denote respectively the
shear and bulk viscosity coefficients of the gas and x, = xj
is the thermal conduction of the two-phase flow. Usually coef-
ficient #; is much smaller than 7.

The impulsion and energy equations in system (1.1) are
written in nonconservation form. Note, however, that the total
impulsion and total energy equations are in conservation form.

We study system (1.1) in one-dimensional slab geometry in
[2, 3]. We denote by u the state vector:

' = (ap,, apa,. ape,, (1 — o)p, (1 — adpay, (1 — a)pe).
We denote next by {} the set of the physical states:
O={ueR,p,>0,0=a=1¢2>02¢>0.

In one-dimensional slab geometry, system (1.1) takes the con-
densed form

du+ A(u) d,u — 9,(D(w)o,u) =0 (1.2)
and the convection terms extracted from (1.2) read
oun + A(u)o.u = 0. (1.3)

We prove in [2] that for some positive real numbers £ and M,
system (1.3) is strictly hyperbolic over the set {}¥ defined by

W=DeN0<]-—a<esuy—ul =1~ sk, u| <M},
where ¢, is the gas sound speed: ¢, = Vyp/p,; for any u €
0¥ matrix A(u) has six real eigenvalues and can be diagonal-

ized over R. We compute the following expansion in 1 — «
of the eigenvalues of A(u):

A=~ ¢+ o((l — ™)
A=+, toll—a)yh)

o 112
/\.3 =y - ( g (0{)) + 0((1 — a)(ﬁ—l)ﬂ)

2
(1.4)
o 2
A=+ ( 9(02)) + o((1 — @)1
}
AS = Uy
/‘.f, = U.

Remark 1.2. The pressure cotrection §is small in compari-
son with the gas pressure p. It plays, however, an important
role from the mathematical viewpoint since matrix A(u) wouid
have complex eigenvalues even for « close to 1 if we had
omitted it. The initial value problem for (1.3) would be ill-
posed. The presence of the pressure correction 4 gives a hyper-
bolic system.

The diffusion coefficients in system (1.2} are small and we
want to avoid solving the small scale effects connected with
the diffusion by considering the convection system (1.3) ex-
tracted from (1.2). In the same manner as in the case of conser-
vative hyperbolic system, we expect the formation of shock in
solutions of (1.3) even for smooth initial data. But when u is
a discontinuous function, the product A(u)d.u has no meaning
as a distribution. To define shock waves solution of (1.3), we
have to add some extra information to system (1.3). Recalling
that (1.3) is extracted from (1.2}, we define in [2] the shock
waves solution of (1.3} as the limit when the diffusion is ne-
glected of traveling waves solution of (1.2): let u(x, £} = ii{(x —
ot) denote a traveling wave with speed o solution of (1.2). Then,

—ait’ + A(G’ — (D(E)a")' = 0.
Denote by u* and u* the left and right states connected by w:

lim u(x, 1) = v,

lim u(f) = u®
frmw e

For g > 0, set

wix,Hn=1 (x — m).
£

Function u, is a traveling wave with speed ¢ solution of
aiua + A(ue) J.u, — az(gD(ua) axus) =0

Furthermore, when & tends to zero, function u, converges a.e.
to the discontinuous function

ul ifx<ot (L5)
uf ifx > ot '

Uy(x, 1) = {

DEFINITION AND ProrosiTiON 1.1 Let ufx, #) = fi(x — o?)

be a traveling wave with speed o solution of (1.2). We say that

function u, defined by (1.5) is a shock wave with speed o

solution of (1.3), which is compatible with the diffusion tensor
D. It satisfies the jump conditions:

ot —u) = [ AG@N'@® dE (1.6)

Definition 1.1 of the shock waves depends on the shape of
the diffusion tensor D in the convegtion-diffusion system (1.2)
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from which system (1.3) is extracted; for instance, we obtain
that when the viscosity coefficient 7, in D is set to zero, system
(1.2) is equivalent with a system in conservation form. On the
conirary when 1, is non-zero no equivalent conservation form
is known.

Here the choice of the diffusion tensor I requires further
attention. First when 7, is set to zero, a straightforward computa-
tion (see [2]} shows that the continuous traveling waves solution
of (1, 2) are solution of the system in conservation form:

ddap, + (1 —o)p) + dlapu, + (1 —apuy) =0 (1.7.0)
ddopgit, + (1 — edpuy) + d(apas + (1 — c)pud)
+ o,(p+ 0) — 0, (no.u) =0 (1.7.i)
dfape, + (1 — e)pe) + dlape,u,
+ (1 — )pe) + d(plon, + (1 — ohuy))
+ 0 6u;) — (i, Ox} — 0,(k,0,8,) = 0 (1.7.iii)
8((1 — a)p) + &((1 — e)pue)) = 0 (1.7.1v)
() + 0, (”5’2 + i + %
(1 —e)pef) + 0{(1 — )pefu) =0 (1.7.vi)

1- a)‘s“) =0 (1.7.v)

where

-
pd—1)

ef = (1 - (1.8)

When 7, = 0, the shock waves solution of (1.2) that are compati-
ble with the diffusion tensor D are the admissible shock waves
solution of the first-order hyperbolic system extracted from
(1.7). The jump conditions (1.6) are then explicit and in conser-
vation form. Indeed, denote by w the dependent variables:

wh = (ap, + (1 — a)p, apu, + (1 — a)pu, apge, (19)
+ {1 —a)pen (1 — ap,u, (1 — a)pie). )

Write next the first-order system in conservation form extracted
from (1.7) as
aw+ d,g(w)=10 (1.10)
for some appropriate flux function g. Then the jJump conditions
(1.6) are equivalent with
o(w* — wh) = g(w") — g(w"). (1.1D)
The viscosity coefficient 7, is very small in comparison with

7, and we are tempted to use system (1.7) rather than (1.2).
However, this is only possible for very weak shocks. Indeed,

the equivalence between (1.2) (in 1D slab geometry) and (1.7)
holds only for continuous solutions. But let be given ut, uf €
0¥ and o € R that satisfy the jump conditions (1.11). When
o is in closed from A;(u®), we prove in [4] that we can obtain
a continuous traveling wave with speed o that connects w* and
w* and a solution of (1.7) only if [w® — w'| is very small. When
the left and right states are more distant, no continuous solution
of (1,7) exists, Hence, the equivalence of systems (1.2) and
(1.7) only holds for very weak shocks. This prevents consider-
ing (1.2) and (1.7) equivalent in applications.

When 7, is small but nonzero, we can construct traveling
wave solutions of (1.2) that connect distant left and right states.
This solution is very close to a continuous traveling wave
solution of (1.7) only when the left and right states connected
by the wave are very close to one another. {See [4] for more
details and Section 2 below for the sketch of the construction
of solutions.)

Finally for shock waves of interest, the viscosity coefficient
7, cannot be neglected and no equivalent conservation form of
system (1.2) is available. We sketch in Section 2 the construe-
tion of some traveling wave solutions of (1.2) and we deduce
some approximate jump conditions for the shock wave solutions
of (1.3). These approximate jump conditions are written in
nonconservation form. We write in Section 3 a Roe-type solver
based on a Roe linearization of these latter jump conditions.
Sections 4 and 5 are devoted to numerical results in one and
two space dimensions. In the case of one-dimensional slab
geometry we compare our results with results obtained with
two other numerical methods, described in [5, 6].

2. APPROXIMATE RANKINE-HUGONIOT RELATIONS

The jump conditions (1.6) depend upon the viscous profile
associated with the shock wave. Needing explicit jump condi-
tions for computations we need more information on this profile
and we sketch the construction of the traveling wave solution
of (1.2) by a method of successive approximations.

Recall that for two-phase fluid flows of interest, the volume
fraction 1 — e of the liquid phase is of the same order as the
small quotient p,/p;. Then, system (1.2) consists of two systems
in conservation form, weakly coupled by small terms in noncon-
servation form; this follows from the adimensionalization of
the system (1.2). Denote by pf and £} the reference gas mass
density and gas specific internal energy, respectively. Write next

— n*%H — o*§ =V 7}
Pe = P Ppr & — Eg & Uy Egltg

(1 —a)p,=p¥B. & =ef, w=Vefi.

Then, the gas pressure p is given by

p =y — Dpeg, =y — DpfefpE, = pfefp.
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Define next the coordinate £ by
&=xiVef.

Then, if u is a solution of (1.2), the vector valued function v,
defined by

V1 = ((ap,. ap,i,. aB,2,), (B. B, Be))
= (V] » Vz)Ta

where &, = B, + #./2 and & = & + #}/2 is a solution of the
system of equations

dlap,) + ddapii,) =0 (2.1.1)
Il apty) + d(apyity) + 8(ap)
a8
- af( e agas) — —eap (2.1.id)
pref 1-2B
at(aﬁgé-g) + af(aﬁgggﬁg)
+ aPiT) — ag( g agﬁg)
*E*
g -E
a Ty
- ag( % afég) = eap 2B o
pies 1—ef
B+ 3By =0 (2.1.iv)
3.8t + 3B + 89487
—ag( U affz,) = —&f ag( ap ~) (2.1.v)
pres 1—epB
3(B&) + 0(B&im) + a,6,8%)
- ag( L ﬁ;agﬁ;) = —'Eél‘il 65( op ),
pre} 1 -8B
(2.1.vi)
where we have set
o
&= E"g;., 9] = 8660.
[
In condensed form, the system (2.1) is written
v+ dg(v)) — ag(Dz(Vl)af"l) = gBy(v) v (2.20)

a;v; + afgg(VZ) - ag(Dz(Vz) a£v2) = SBz(V) ag". (2.211)

When £ is set to zero, the system (2.2) reads

v+ ag(vy) — aDi(v) vy =0
AV T 3,&:(v2) — (Duvy) a,%) =0,

(2.3.)
(2.3.ii)

The system (2.3) is made of two decoupled subsystems; the
first one is the set of Navier—Stokes equations in one space
dimension. Its solutions are studied in [7, 8]. The second subsys-
tem is a convection—diffusion system of the same type.

Let ¥ be a traveling wave with speed o solution of (2.3.1)
and let it be given a state v5. Then the function

V(&) = (Vi(H, vD)

is a traveling wave with speed o solution of (2.3). In the same
manner, if v, is a traveling wave with speed o solution of
(2.3.ii) and v} is a given state, we obtain a traveling wave with
speed o solution of (2.3) as

v(§) = (vi, v §).

We assume next that the number ¢ is small and that the
number 8, is of order 0 in . The solutions of (2.2) are obtained
as perturbations of the solutions of (2.3).

THeEorREM 2.1.  Let it be given that ¥v° = (¥}, ¥}), a traveling
wave with speed o solution of (2.3) such that either ¥} is a
traveling wave with speed o solution of (2.3.0) and ¥} is a
constant function, or vi is a constant function and v is a
traveling wave with speed & solution of (2.3.if). Set v* =
(vi, v} = v¥(—). Then, for € small enough, the successive
approximations

—o(vi" = vi) + (v — gi(vD) — Di(viT) (v
=& [ By ds @4d)

_U(V§+1 - vé‘) + gz(vgﬂ) _ gz(vé) _ Dz(vg+1)(vg+1)a
£ j BV ds  (24ii)

define a sequence v¥, p = 0, with v?/(—®) = vi(—x), This
sequence converges when p tends to +© to a traveling wave
v with speed o and v(— ) = v}, solution of (2.3). Furthermore,
v satisfies the following approximate jump conditions:
[ap i, —o)] =0
[, #,(7, — 03] + [@p] — a'pHlog(1 — &B)] = O(s?)
[abgé‘:g(ﬁg - O—)] + [aﬁﬁg]
— oalf'log(l — B)] = O(e?)
1B — o) =0

(2.5.1)
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. = of]
[Bui(ul -+ 6B+ 8%]
+ atpHlog(l — eB)] = O(e?)
[Bé@ — o) + 6.8%%,
+ oalptllog(l — eB)] = O(e?). (2.5.i)

Proof. We provein [8] that for & small enough, (2.4) defines
a sequence v7, p = 0, that converges to a solution of (2.2). Fur-
thermore,

v~ ¥l = Ce (2.6)

for some positive number C. Inserting this latter estimate in
{2.2) gives the approximate jump conditions:

—o(v{+®@) — vi(—0)) + g(vi(+2)) — gi(vi(—>))
=g J BV’ ds + Ofe?) 2.7.0)
— oV (+ ) — V() + o+ ) — gilv(— %))

=8 r: BAV)(¥) ds + O(e?). (2.7 i)

But either function v{ or function ¥} is constant. When v} is
constant, we compute, for instance,

|
On the contrary, when v} is constant, we have

- Ao\’
r a“p‘“( B,_)ds=0
- I —ef’

(2 ) ds = aipttontt — o8

1—¢f3

and

op{log(1 — €B%] = 0.

Using (2.6), we can write in both cases

f " ( : rs)’ds = atp{log(1 — &B%)]

e 1—¢
= atplog(l — ef)] + O(eM).

This concludes the proof of Theorem 2.1. ||

Returning to the system of variables u, we obtain with Theo-
rem 2.1 traveling waves solutions of {1.2) that satisfy the ap-

proximate jump conditions:

lap (e, — )} =0
leepetsg(u, — )] + [ap] — a'pllog(a)] = O(e?)

[apeeu, — o) + [apu,] — oca'plogla)] = O(=?) (2.8.1)
[(1-eap(uy—a)]=0
[(1 — adpn(ey — )] + [6(1 — o))
+ [p(1 — o)] + o'pllogle)) = O(e?)
[(1 — a)peduy — )] + [6(1 — a)’ul]
+ [pu(l ~ a)] + o a'plog(a)] = O(e?). (2.8.1i)

Remark 2.1. Note that these jump relations are written in
nonconservation form. Furthermore, they are perturbations of
order & of the decoupled jump relations in conservation form:

[apg(ug - 0-)] =0
fopulu, — o)) + lap] =0

[ep,e,u, — )] + {apu,] =0 (2.9.0)

(1 —a)p(y— )] =0

[(1 — e)pu(, — )] + [6(1 — )] =0
[(1 — @)peu, — )] + [61 — a)’u} = 0. (2.9.1)

Let us give two examples of shock wave solutions of (1.3)
that satisfy the approximate jump conditions (2.8): first a solu-
tion close to a shock wave solution of the Euler system of gas
dynamics (see Table I).

This shock wave with speed o = 110 ms™! is referred to as
shock wave 1 in the sequel. For this wave, the quantities associ-
ated with the liquid phase remain almost constant.

Second we give an example of a shock wave that satisfies
the approximate jump conditions (2.8) and that is close to a
shock wave solution of the hyperbolic system {see Table II):

ol —ayp+ 0.1 — o), =0
A1 — a)puan + 91 — dpud + 0.6 (1 — =0 (2.10)
(1l — a)per + 9,(1 — a)pey + 8,0, (1 — )P, = 0.

This shock wave with speed o = 23.119 ms™' is referred to
as shock wave 2 in the sequel. This wave mainly affects the
quantities associated with the liquid phase.

TABLE I
N o i, Ly Tg T
ut 10000 0.9900000 —100. —150. 300.000  300.00
u® 04097 09900094 —402.583 —150.244 190.998  299.99
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TABLE 11
Py o g Hy Tg T
u* 0.99776 95 103.416 22,495 299.732 300.01
o® 1.00000 99 160.000 20.000 300.00 300.00

3. ROE-TYPE RIEMANN SOLVER

The Roe-type numerical scheme we introduce below relies
on a linearization of the approximate jump conditions (2.8)
under the form

AQut, ut)(u® — ut) = g(uf — ub), 3.1)

where the matrix valued function (ut, u®) — A(ut, u®) is chosen
so that (3.1) and (2.8) are equivalent. Recall that the parameter
€ is small: we obtain our Roe linearization of conditions (2.8)

as a perturbation of a linearization of conditions (2.9). We first
write a linearization of (2.9).

LeEMMA 3.1.  Let be given two states u* and u®. We define
the average quantities &p,, #,, €,, | — o, U; and &, by

i (a,Lpé)l.'Z + (aRpf)”z

op,'” = 2 ,
. (o) Pl + (o)t
Uy = (o) 1 (oFp)?

324
Z _ (aLpé)llzhé + (aﬂpg)ln?hg ( )
g b + (g
=L &
£ ,Y g 2 4
where
h,=¢ +B='ys -I-lu"'
SR RPY s Tyt
is the gas specific enthalpy and
i (1 — ab) + (1 ~ gR)\2
2
B s Bl U TN
“ (1 — a2 + (1 — aty? e
__(—ae+ (1 - atyief
=

(1 — aL)IIZ + (1 — aR)l.fl

Marrix Al defined by

Ali(ut, vty

y—1

y—2_, ,_+3 2y _,

_Vgsﬁg + 2 Hy Y& 2 Uy,  Yig
3.3
is @ Roe linearization of the jump conditions (2.9.1).
Next, matrix AY, defined by
0 1 0
ALt ufy=| —mi+X 2 0], (3.4.0)
_Ejﬁ] + Y] Eg + Yg Ej
where
S Y S RPN oY
L Ml Sk D T Y O
o at — ot ..
X= 56 (3.4.11)
—(1 — ™ if af = of
D
and
(1= a®uf (1 — ofy*!
6, + (1 — oyt —(1-aht
= #*~ L
P 2 o — af Ifa “«
h= (6 — 1)@, uF + uf
__9;(1 —a)f? fof = ot
et 2
(3.4.1i1)
Y, = &((l — a7+ (1 — oD (B3.4.0v)
2p;

is a Roe linearization of the jump relations (2.9.ii).
Proof. Matrix (3.3) was introduced in {9] as a linearization
of the jump conditions for the Euler system of gas dynamics:
Lap,u,]
lapg; + ap)
lapeg; + ppu,)

0 1 0

3=y WA _

— 2 ug (3 7)“3 y (3.5)

—~vE . + L e + 3- Y 2 7
YEgity 2 iy 2 7 My YUy

[ap,]

[pis]

[oep,e,]
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Next, the functions

(11—, (1 — )", (1 — x)e)—

(1 —a, (1 — o). {1 — x)ey)
and

({1 — )2 (1 — o)y, (1 ~ a)'e) —

(1 = &y, (1 ~ eui, (1 — e

are homogeneous with degree 2 so that

[1 - aly 0 1 0 [1—a]
(L —eduf] = —¥ 24, O {1~ o)
[(1 — aeuy] ~eu, & u [(1 — a)e]

where the average quantities | — «, &, and e, are defined by
(3.2.i1). Following {10] we write next

- | ey _
[Bar)u] = [(1 — a)pl(l Q)PJHI]
_ 1 {8a") 6 _
- 2P1 (1 _ ag + I — a]_) [(1 a)plul]
L -efufra —aﬂu%{ o) }
2 (1-e) |’

This concludes the proof of Lemma 3.1. ||

To obtain a linerarization of the jump relations (2.8} it re-
mains to linearize the *‘perturbation’’ terms.

Lemma 3.2, Let ut and u* be two given states. Set

leepgu, + (1 — a)pun]
[ap, + (1 — a)p]

0 iflop, + (1 — adp] = 0.

o iffap, + (1 — a)p] # 0

(3.6)

We define next the matrices

0 0 0
AL u)=| opZ 0 © (3.7
oupZ 0 0

Al@h oY = p (ﬁ + ﬁ - 1)

0 0 0

(y — Dz

3 (1 — y)u, vy—1

(3.74i)

(v — Dz
RS Ao

> =y, oly— 1)

0 0 0

—O!LPLZ“'M 0

ALt uf) = 2ataf , (3.7.iii)

otz + BT

2ataf
where

log{a)] if ot # ot
[o]

z=3 (3.8)
E lfa‘[‘=CER.

The matrix

Aut, ut) = A%, uF) + eAl(ut, uf)
A}, © 0 AL 3.9
= +e
0 A} Al Al

is a Roe linearization of the approximate jump conditions (2.8);
conditions (2.8) and (3.1) are equivalent.

Proof. According to Lemma 3.1, the perturbation terms
that remain to be linearized are o*p*{log(a)], [(1 — e)p], and
the same terms multiplied by the number o. We first write

_atp* [log(e)]

LoL -
ap*llog(ar)] ol

(I —e)p)

and we deduce matriz Al,. Next,

ip(l —a)]= [%} — [ap]

1 1 ol P+ afpf
= — . e Tapr
(20[” 2at 1) Lap] 2p

yoboe®

(1 —a)pl.
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The jump [ep] is linearized following (3.5), which yields ma-
trix A}, while the other term is included in matrix A};. |

Remark3.]. Notethat when the numbers | — atand 1 — a?
are of order g, the matrix A' is of orc}_er zero so that A is a
perturbation of order 1 in £ of matrix A®,

Using the linearization (3.9} that we introduced, the numeri-
cal scheme (written in nonconservation form) reads

Ar -
ujt! = — o= (A, W) (U — )

- (3.10)
+ (AL, uf)) (uf —up),

where u? stands for an approximation of the solution n of

10
0 .
0
0
= 1 ’
iy Ef
_r 0~
€ —— — I
C !
{4.5)
0 0
0 0
0 0
5= 1 S L
u;+ ¢y 0
_ Y u;+ ¢ 1
e;+:’+ Yz —
Cy C

where Y, and Y, are defined by (3.4.ii) and (3.4.iv). The corre-
sponding left eigenvectors are

0 0
0 0
0 0
12= E["‘Eg 1(5]= Eg-“z ,
2t 2c,
1 Bl
2c, 2¢c,
0 0
(4.6)
0
0

where ¢(u, v) is the numerical flux of Roe scheme:

$(u, v} = h(u) + (Clu, v)) (v — )
= h(v) — (C(n, v))*(v ~ u)

_hw +h(v) _[Clw, v)| (v—
2 2

(3.16)

u).

We prove the following.

LeEmma 3.3,
tion form.:

The scheme (3.15) takes the nonconserva-
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& the following approximate eigenvalues and eigenvectors for
matrix Al'(uf, af):

Ay = AL+ Al + O(eh (4.7.1)

where
A=A (4.7.i1)

and

r.=rl+er} + O(sh, {4.8.1)

where
S P .
ri = m2=1 I\?H s )\2 (lﬂa Alrle}rg' (4-8.11)

mEk

Proof. Assume that matrix A%ut, u®) has six distinct eigen-
values. We look for some approximate eigenvalues and eigen-
vectors of matrix A(u%, u®) in the form

o+ 40
AL, uF) = > erARuE, uF),  rut, uf) = ) efri(ut, ut).
p=0 p=0

Vector T, is an eigenvector of matrix A = A" + gA! associated
with the eigenvalue A, if

(KO + sﬁ') Zw efrg = (2 s”)\i)( B"rﬁ). 4.9)
7=0 »=0 p=0

At zeroth order in g, we get
Ard = Afrd.

Hence, at zeroth order in £, the eigenvector r; and the eigenvalue
A, are given by expressions (4.3)-(4.5). Next at first order,

FA NN
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4. IMPLEMENTATION OF THE NUMERICAL SCHEME

We describe below an efficient implementation of the numer-
ical schemes (3.10) and (3.19). An implementation of these
two schemes requires g priori to know the eigenvalues and
eigenvectors of the linearization matrix (3.9) for any two states
u* and u®. Various linear algebra packages offer a numerical
solution to this problem. This leads, however, to a very expen-
sive computer code.

Recall, however, that when the volume fraction of the liquid
phase is of order &, the linearization matrix {3.9) is a perturba-
tion of order & of matrix A%ut, u®) whose eigenvalues and
eigenvectors are explicitly known. A perturbation method en-
ables us to obtain approximate eigenvalues and eigenvectors
of matrix A(u’, uf). We give next a simple algorithm to decom-
pose any vector in R® on the obtained approximate eigenbasis
of matrix A{u®, u¥).

Matrix A%ut, u®) has a simple structure and we can compute
its eigenvalues and left and right eigenvectors.

LEMMA 4.1, Matrix A°(ut, u®) has the eigenvalues

Al =i, -,
M=7,+5, 4.1)
A =1,

where the gas sound speed T, is
¢, = Vyly — Dz,

and

/\ngh_a
=7 +¢ (4.2)
/\2=-sz,

where the speed ¢, is

60(1— o™ —~ (1~ oty
Py af - o
80,

____(1 _ aR)zS—]
/]

if a® #= ot

&=

ifaf = ot

The right eigenvectors associated with eigenvalues A;, i =
1. ..., 3, are respectively

1
U, — T,
iy _ _ c:
2 —-uc, +
= 2 M y-1 |,
0
0
° (43)
1 1
gt c, Uy
B G F
r‘g = 2 ugcg — 1 ) rg = 2
0 0
0 0
0 0
The corresponding left eigenvectors are
(y—DE; (y- D u,
4z 2¢, 4z Ze,
1 (y- g, 1 (y-Di,
2c, 2c; 2z, 262
It= (y=1 . B= o-=b |
& <
0 0
0 0
0 0
4.4)
__®
2(y — 1)l
(y — Du,
%
8= (1=
T
0
0
0

The right eigenvectors associated with eigenvalues A;, [ =

4, ..., 6, are respectively
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0
0
0
= | ,
243 E[
Y -
E!_;_qur_ Cy
Cy o]
4.5
0 0
0 0
0 0
= 1 » = o |
u; + ¢ 0
_ Y u+7T 1
e;+~_—+Y2 —
C} C;

where Y| and ¥, are defined by (3.4.1ii) and (3.4.iv). The corre-
sponding left eigenvectors are

0 0
0 0
0 0
lgz H;+E, , ](5]= Ej_ﬁ; ,
%, 2%,
_1 1
2¢ 2,
0 0
(4.6)
0
0
T 2 __ 52
lg: _‘EJ'E'it_;Yl4‘Ygul!_zﬁiI
Cy Ci
Y, It
g g

Recalling that matrix A! is a perturbation of order & of
matrix A, we can obtain next approximate eigenvalues and
eigenvectors of matrix A'(ut, u%) as follows.

ProrostTioN4.2.  Let be given two states u” and u*. Assume
that matrix A°ut, u®) has six distinct eigenvalues A?, 1 =
i = 6. Then for e small enough, we obtain at the first order in

e the following approximate eigenvalues and eigenvectors for
matrix Al(ut, u®):

A=A+ Al + 0D (4.7.1)

where
Al =0, AleD) (4.7.1i)

and

r.=ri+ er) + 0, (4.8.0)

where

: —1 0 3 lp0ypd
I — i i

=2 7 U A, (4.8.ii)

m=1*tm
m#k

Proof.  Assume that matrix A°(u’, u?) has six distinct eigen-
values. We look for some approximate eigenvalues and eigen-
vectors of matrix A{u”, u*) in the form

Fm I
Auk, ufy = 2 e’Af(u’ uf), rul u®) = z eri(ut, u®).

p=0 p=0

Vector r, is an eigenvector of matrix A = A° + gA! associated
with the eigenvalue A, if

+o +o +oa

(R0 + gAY errp = (2 sw,;)(z sprg). 4.9
=0 p=0 =0

At zeroth order in &, we get

Ar] = Alr).

Hence, at zeroth order in g, the eigenvector r; and the eigenvalue
A, are given by expressions (4.3)-(4.5). Next at first order,
4.9) gives

(A°— A0Dr} = —(A' — AJDr!. (4.10)
Multiplying this latter identity on the left by the left eigenvector
1? of matrix A%, we obtain that the number A} is given by the
scalar product:

M= (1, A

Next, the vector r} solution of (4.10) is given by

1 -
T @8, bl 1
" k
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The computation of the approximate eigenvalues and eigen-
vectors relies on the assumption that matrix A° has six distinct
eigenvalues. Indeed formula (4.8) is not defined when A® has
a double eigenvalue. According to Lemma 4.1, matrix A has
adouble eigenvalue when one of the following conditions holds:

Due to the drag force, the relative velocities of the gas and
dispersed phases are close together. On the other hand, note
that the number ¢; is rather small. Hence, the oniy physical
case (o retain is

MH=E1tC{.

In that case the computer code fails. Note, however, that system
(1.3) is hyperbolic over the whole set (Y, i.e., that the difficulty
arises from the numerical treatment.

To overcome this difficulty, when computing an approximate
eigenvalue A, of matrix A(u*, u*), we can replace the number
o that appears in matrix A by the eigenvalue A} of matrix A°.
Indeed the Roe linearization A(u, u*) is designed so that when
u’ and u® are connected by a shock wave with speed o, the
vector u® — u’ is an eigenvector of matrix A associated with
the eigenvalue o. In this case, the number ¢ is precisely the
number that appears in matrix A', Expecting that this eigenvalue
@ of matrix A is a perturbation of order & of some eigenvalue
A of A% we can replace o in A! by A!. Matrix A is then
modified at second order in £ and we keep first-order accuracy
in the computations. With this approximation, formula (4.8} is
no longer singular. Indeed we have the following.

PropPOSITION 4.3.  For i = 3 or i = 6, eigenvector r? is an
eigenvector of matrix A, where number o in A' has been
replaced by AY. Next for i = 4, 5, the computation of the
approximate eigenvector v; with formula (4.8) is nonsingular
when the number o in matrix A is replaced by Y.

Proof. First, when o = ¥,, we have that

so that A'r} = O vector 1} is an eigenvector of matrix A,
provided that ¢ = #,.

For any value of &, we have A'r{ = 0 so that r? is always
an eigenvector of matrix A.

Choose next | = 4 or i = 5. The only a priori singular terrn
in formula (4.8) is 1/(AS — A" for m = 3 and A}, =&, = A}

But when o in matrix A' equals u,, we have

5o (-l (1—’)1))
1- : £, AL =0.
( Ay - D @ 2 2 =0

More generally, for o = A? close from u,, we compute

(1 _ U (y ~ Dy, (1 - ')’)) Al
2Ay—Der @ & *

_(_g_g)(w—cl)ap 0 0)

g

so that formula (4.8) is nonsingular when ois replaced by A%. |}

Remark 4.1. Replacing o by A} in matrix A' is only valid
(up to second order in £} for exact shock data but seems inappro-
priate for numerically diffused profiles. This problem is a gen-
eral problem for Roe-type methods which are built to solve
only exact shock data. However, Roe-type methods give very
good results and it seems that any two intermediate shock points
in a numerically diffused profile given by a Roe-type method
can approximately be connected by a shock wave with the
velocity of the exact shock wave. This would (as well as the
numerical results below do) justify our approximation.

It finatly remains us to decompose any vector in R® on the
approximate eigenbasis r; of matrix A(ut, u®) computed in
Proposition 4.2. This is done easily thanks to the following.

PrOPOSITION 4.4.  Ler y be a given vector in RS. Then

] & 6
y=>, [(l?,y) +ey (l?, > y?r})] (! + erl) + O(e?.
i=1 i=1

=1
(4.11)

Proof. We decompose a given vector y in R® as

(4.12)

y= z e’ (2 yi(rd + sr'))

=0 i=1

Expression {(4.12} at zeroth order in ¢ reads

6
>yl =y,
=1

so that y¥ = (19, y). Next, at first-order it reads

6

>yl + yirt = 0,

i=1 v
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This yields

;]
yi= (l?,zy?rf)-
=t

This gives formula (4.11). |}

Finaily the approximations we considered allow us to com-
pute in a simple manner and at a low cost the vector |A(u?,
uF)ly for ut, u* € Y and y € R® given: if ry, ..., r denote the
approximate eigenvectors defined by (4.8), we write

1]
(At uB)y = yi|A]r;, 4.13)
i=]

where the numbers y;, A; and the vectors r; are respectively
defined by (4.11), (4.7}, and (4.8). This gives a simple, efficient,
and low cost second order numerical scheme for system (1.3).

We compute the solution given by our numerical scheme
when the initial data is a discontinuous profile that connects
the left and right states given either in Table I or II of Section
2. Recall that the left and right states given in both tables satisty
the approximate jump conditions (2.8) for some known shock
speed . We let the computer code run for some physical time
To. The expected solution is the initial profile moved from the
initial position by the distance oT,, where o is the speed of
the shock wave. We plot on the same figure the computed
solution and the expected solution. We can thus compare the
profile and the speed of the computed wave with the expected
profile and speed of the shock wave. We performed this test
for the two shock wave examples given in section 2. Recall
that these shock waves are representative of the different shock
solutions of (1.3), since the first one mainly affects the gas
quantities while the second one affects the liquid phase quanti-
ties. Figure 1 gives the results obtained for the first shock wave.
The physical time of computation is 7y = 5 X 107 5. The
computed solution for this first example is excellent regarding
both the shape of the profiles of the quantities associated with
the gas phase and the speed of the wave, However, the left gas
volume fraction and liquid phase velocities are close but distinet
from the expected quantities; some waves have gone out of
the computational domain and given a wrong left state. It is,
however, to be noted that this error is very small and stationary
in time. Furthermore the velocity of the computed gas volume
fraction and the liquid phase profiles are correct.

Next, Fig. 2 shows the results obtained for the second shock
wave of Section 3. The physical time of the simulation is
Ty = 2.10% 5, The connected states and the velocity of the
shock wave are correct; only the gas temperature profile shows
a small deviation from the expected profile. But here, again,
the velocity of the computed wave is correct. We note the
presence of a second wave apart from the main shock wave. This
wave arises in the computed solution because of the different
approximations we introduced in Section 3. The profiles are

here more diffuse than the profiles of Fig. 1; this is a general
pattern of Roe-type methods which give sharper shock profiles
for stronger shocks -

We compare next our scheme with two different methods
described respectively in [5, 6]. These two methods have in
common to simplify the treatment of the coupling between the
two phases, either by decomposing the initial nonconservative
system into two conservative decoupled systems plus noncon-
servative coupling terms seen as production terms as in [3] or
by retaining a zeroth-order expansion in 1 — « of system (1.3)
as in [6].

The method developed in [5] consists in writing system (1.3)
in the form

ddap,) + d.(apu,) = 0
dlapgug) + ddapul) + dlap) = pdo
ofape,) + dlape,) + dlapu) = —pad(l —oduy)
(4.14i)
(1 = a)p) + 3((1 ~ a)pu) =0
(1 —adpae)) + 8((1 — a)pui) + 0,6 = —(1 — )dp
({1 —a)pe)) + 3,((1 — a)prew,)) + a(Bu) = —(1 — e)u,d.p.
(4.14ii)

Note that the two conservative systems in the left-hand side of
(4.14) are decoupled. The coupling between the two phases
only appears in the production terms. In [5], Toro proposes to
solve this system using a time splitting: for each time step, he
first solves the two conservative decoupled systems in the left-
hand side of (4.14) and, second, he integrates explicitly the
production terms which are estimated using a second-order
centered difference scheme., This method leads to a robust
solver.

We give in Fig. 3 the profiles obtained with this method for
initial data from Table [ in Section 2. The results are excellent.
The speed of the shock wave is very accurately computed and
the computed wave connects the correct states. We give next
in Fig. 4 the results obtained with Toro’s method at first order
for the second shock wave of Section 2. The computed profiles
are very diffusive but connect the right states (apart from the
gas temperature). The liquid phase velocity profile is, however,
composed of several waves, instead of a single one. We give
next in Figs. § and 6 the results obtained with a Toro’s method
at second order for two physical times: 7, = 107% s for Fig. 5
and Ty = 3. 1072 ¢ for Fig. 6. The profiles are sharper. However,
we note the presence in the computed solution of a perturbation
that grows in time. In Fig. 6, the computed solution is far away
from the expected one.

In our opinion, the main drawbacks of this numerical scheme
is that the obtained profile depends upon the order of the
method; recall that any Godunov-type solver generates some
numerical viscosity whose amount depends on the order of
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FIG, 1. Shock wave 1. Method

the method. Hence, Toro’s numerical scheme computes some
solution of system (1.3} in which some diffusion tensor, intro-
duced by the numerical method, has been added. But system
(1.3) is in nonconservation form and as noted in Section 1, the
states that can be connected by a traveling wave solution of
{1.3) in which a numerical viscosity tensor has been added
depend on this latter tensor. Unlike the method proposed in
this paper, Toro’s method is not compatible with the physical
diffusion tensor so that, when using Toro’s method, a different
rarefaction and shock wave pattern is selected. Diffusion plays

13

299681 .

Gas Volume Fraction
é

Liquid Velocity

Gas Pressure

! at second ordey, Ty = § X 1073 5.

an important role in the definition of shock wave 2 in Section
2; the wave pattern selected by Toro’s method is indeed distinct
from the expected single shock wave and depends on the order
of the method.

We introduce in [6] a simplification of system (1.3) based
on the analysis described in [8]. Recall that for two phase fluid
flows of interest, the volume fraction 1 - « of the liquid phase
is of order p,/p; and is small in comparison with 1. In Section
3, we took advantage of this fact to write a first-order expansion
{2.8) of the jump conditions (1.6). In [6], we simply take this
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expansion at zeroth-order in | — &, which means that we solve
the following decoupled two systems:

d(ap,) + dlapeu,) = 0
dlapgy) + dlapul) + ,(ap) =0

dlope,) + o (apeu,) + 3, (apu,) =0

(4.15.i)

0.99

1.98%

0.98

0975

Gas Volume Fracilon
=
3

0.955

Liquid Velocity

AT
8.45 10*
8.4 10°

835 10°*

Gas Pressure

8310*
.25 10"

8.2 19*

81510 |

1 at second order, Ty = 2 X (0725,

(1 —a)p)) + 31 —a)pe)) =0
(1 — a)puy) + 0,((1 — a)puwi + 6l —a)’) =0

(1 — a)pme) + 8,((1 — a)pie;) + 8.(0(1 — a)Yu;) = 0.
{4.15.11)

The first system is simply the Euler system of gas dynamics,
where the gas mass density p, has been replaced by the quantity
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FIG. 3. Shock wave 1. Toro's method at second order, T, = 5 X 1077 s.

op, and the second system consists in a simple strictly hyper-
bolic system. A Roe linearization of the jump conditions for
this system is given by matrix A%, The obtained computer code
runs very fast and is robust. The computed profiles for shock
waves 1 and 2 are plotted in Figs. 7 and 8. For the first wave,
the profiles of the quantities associated with the gas phase
are accurately computed while the void fraction and droplets
velocity profiles are miscomputed; the profiles of the liquid
phase quantities are constant and equal to the right state of the

initial profile. The two systems are decoupled and here the
speeds of the wave solutions of (4.15.ii} all are negative and
ga out of the computational domain through the left boundary;
inside the computational domain, the computed solution is con-
stant and equal to the right state. Here the quantities associated
with the gas phase are accurately computed since the coupling
between the two phases is very small for this first example of
a shock wave.

In Fig. 8 the computed profiles for the quantities associated
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with the liquid phase are reasonable. The computed profiles
are, however, made of several waves: by construction, the left
and right states u” and u® are such that the difference u® — u*is
an eigenvector of matrix A(u’, u¥). Here, omitting the coupling
between the two phases, we only consider the eigenvectors of
mairix A" u® — u’ is no longer an eigenvector of this latter
matrix but has a nonzero component on every eigenvector of
A’ Hence the computed solution is composed of several waves
and not the expected single wave. However, the obtained wave

pattern is stable in time, unlike what happens with Toro’s
method.

5. TWO-DIMENSIONAL SOLVER

In two dimensions, the system we study is written

dfap,y + 0.(apu,) + 8,(apo,) =0 (5.1.0)
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dlap) + 3.(epul) + dlapl)
+ad,p=10

al(apgvg) + ax(apgugvs) + 6y(apgv§)
+ ad,p =10
dlape,) + d(apeu,) + d,(xpel,)

+ d(apu,) + d,(apu,)
+ po (1 — o)) + pa((1 —av) =0

(5.1.ii)

(5.1.1ii)

(5.1.iv)

(1l — a)p) + 31 — o) pyity)
+ av((l - a)plvr) =0

a{(l — aypu) + 81 — a) pui)
+ 3,((1 — aduwy)
+ 8,61 — ) + (1 — a)d,p =0

(5.1.v)

(5.1.vi)
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(1 — w)pw)) + 8,((1 — @) puevy)
+d,((1 — a)v?)
+ 3,(0{(1 — )+ (1 —wd,p=0

(1 — ) pe) + 3.((1 — @) preyiay)

+ ay((1 — a)pet;)

+ 3001 — @’ + 3, (6(1 — a)’vy)
+ (1 —audp + (1 —awe,p =0,

(5.1.vii)

(5.1.viii)

where ¢, = g, + (u; + v)/2 and e, = g, + (4 + v])/2. We
have denoted by «, and v, (resp. ¥;and v)) the x and y components
of the gas (resp. liquid) phase velocity. To begin with, we
follow [12] to write a first-order two-dimensional numerical
scheme for system (5.1). Given a grid made of polygons, we
construct an approximate solution u" of (5.1) for each date
t, = nAt with ufy = u} constant over every cell K of the grid by

At
K] EK |Al o, (uk, uko), (5.2)
ACH
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where K denotes a given cell, A is one edge of K, v, is the reduce the problem to the computation of a flux for the one-
outward unit normal to A, u%, is the value of the function u" dimensional system:

on the polygon neighboring K with common edge A, and

¢, 1s a numerical approximation of the flux crossing the edge

A, The sum in (5.2) is performed on the different edges of alap,) + 9:ap,U) =0 (5.3.0)
polygon K. ) B
To compute an approximation of the flux crossing the edge dlap,Up) + d.lap,U) + addp) =0 (5.3.1)

between two cells, we use the rotational invariance of system
{(5.1) (see [13] for more details.) Writing systern (5.1) in the
normal {£) and tangential (/) directions to a given edge A, we dlap.e,) + dlape,U) + dlapl,)

dlap V) + d:(ap, U, V) =0 (5.3.il)
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) +pa (1 —a)U)=0 (53.iv)

At —ap)+ 9.1 —aypUD=10 (5.3.v)
3((1 —a)U) + 3,1 — a)pU})

+ 361 — e+ (L —a)dp=0 (53¥)

(1 —a)pV)+9,((1 —adpU;V) =0 (5.3.vii)
31 — a)pe) + 3:((1 — o) preU))

+ 3001 — @)’U) + (1 — a)Uy3,p = 0, (5.3.vii)
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3 at second order, T, = 2 X 1072 s.

where we have denoted by U, and V, (resp. U, and V) the
components of the gas (resp. liquid) phase velocity in the system
of coordinates (£, £). This system is the same as (1.3) with the
additional variables V, and V. The two new characteristic fields
are linearly degenerated while the other ones can be deduced
from the fields of system {1.3) by simple transformations. Fol-
lowing the method developed in Sections 3 and 4, we write
the flux ¢, _, crossing the edge A of the cell K in direction »y
under the form

¢VK.A(“Kﬂ Ugq) = (A‘(Zm Zxa)) (Zxa — Zg)s (5.4)
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where A is a Roe linearization of some correct jump conditions
for system (5.3) and z denotes the state u writlen in the system
of coordinates (¢, £). The computations are no more compli-
cated than the one in Section 4, leading to a first-order numerical
scheme for solving system (5.1)

As usual when using a Roe-type Riemann solver, some non-
physical solution may appear in rarefactions and we have to
use an entropy fix to correct the computed solutions. We have
used either a Harten entropy fix (see [14], for instance) or a
nonparametrized entropy fix described in [15, 16]. We had
many difficulties determining appropriate truncation velocities
for a Harten entropy fix; we chose a first truncation velocity
for the genuinely nonlinear fields r;, r, associated with gas
dynamics and another one for the fields ry and r, associated
with void fraction waves. This solution is not really satisfactory
since these parameters depend on the computation o be per-
formed. Instead we prefer to use the nonparametrized entropy
fix introduced in [15, 16] which gives good results and is simple
to implement.

To obtain a second-order accurate scheme, we construct for
each date ¢, a function " whose restriction to a given cell X
of the triangulation is afine. This function may be discontinuous
when crossing an edge of the grid.

Let be given at time ¢, = nAt an approximate solution u” of
system (5.1). For each cell K of the grid, we set

1
= m L w*(x) dx. (5.5

We compute next an average value of the function u" at the
center of an edge A between the two cells K and K, to be

uit'? = Wy, ug ), (5.6)

where W(ut, u®) denotes the Roe average defined by (3.2). We
introduce a function @ that is afine in each cell K
YK, V(x,y) €K,

i(x) = uf -+ (x — x)Px + ( ~ ¥,

(5.7)

where (x¢. y,) denotes the barycenter of the cell K. When the
function @" is defined by (5.7), the slopes py and § are given by

- _L =~ _i, TR Y

Pr = K] jxa,u dxdy = ] Lku v ds

o= | adrdedy= o [ v ds
K|« |K|J o ’

where » = (v*, '} is the outward normal to K. Hence we
predict some slopes Py and 4y with the formulae

Pr= ,K| > Ayt (5.8.1)

AKX

dx = fKI > |Alugt ey, (5.8.ii)

ACHK

The next stage consists in correcting the above slopes so that
no oscillations appear at the interfaces between the cells of the
gridding. This correction is performed on each component of
the vectors py and g To this end, we replace the slopes Py,
and §; computed above by the slopes:

Pr: = Bribri  Qx: = Brilri (5.9

where the limiters 3;; are computed as follows: we first set

fiff, = sup @iy (x,y), G = inf fgixy), (5.10.0)
(xEK (ry)EX
u, = max uj ;, ug; = min uf ;. (5.10.i1)
AEdK AEIK
We set next
i T Uk, ug; — Ug;
B max (0 K), A%, = min (0, it K),
IJK,_‘ uﬁ: ﬁ?l_uKl
(5.10.1ii)
and, finally,
By, = min(1, BY;, BR:)- (5.11)

After correction of the slopes, the approximation u” we choose is

VK. Vix,y) EK, (x)=uj+ (x— YUk

(5.12)

xopg +(y —

We can now proceed to the time iteration, following what
was done in Section 3 for one-dimensional slab geometry. The
increment of the average value uf of the function v" in the cell
K arises from the fluxes due to the discontinuities of the function
i" at the boundary of the cell K and from the slopes of the
function @" inside the cell K. The fluxes due to the discontinu-
ities of the function @i at the boundaries of the cell K are
computed as follows: we denote by TiF4'? the left value of the
function @ defined by (5.12) at the center of the edge A,

patl2 —

gy uj + (kg — x)pr + (s — ¥e)dis (5.13)

where (x4, y4) are the coordinates of the barycenter of A. Then
these fluxes are

Fi= o S Al (W52 @), (5.14)

|K| Kedk

where ¢, , denotes the one-dimensional, first-order accurate
numerical flux (5.4) in the direction ¥ normal to the edge A.
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We compute next the increment due to the slopes of the
function " in cell K. Consider first the case of a system of
conservation laws for two flux functions f and g,

dau + 3.fu) + 9,gw) = (5.15)

Let K be a given cell and assume that the function u is continu-
ous over K. The integration of (5.15) over K X [#, t + Ar] gives

1 1
—_— + — —
K L( u(x, y, t + Aty dx dy K L u(x, v, Hdedy

H

[ af(u) dx dy — ’L afwdedy  (5.16)

K] |K1

K j () v* + g(u) ") ds.

We discretize the latrer expression according to

R —

A
u} ! E lAl(f(“m)VA

n. =
e |K| AzoK

g(ug.) vi),

where the states uy4, A € 4K, are the values of the function
u at the center of the edge A of the boundary 3K.

We extend this formula to the case of nonconservative sys-
tems; assume that instead of the flux functions f and g, we
know for any two physical states u’ and u® convenient Roe
linearizations A, (u”, u®) and A, (u’, u®) of the jump conditions
in directions x and y, respectively. In the case of conservative
systems, we require of course that

Vul, u

{f(u’*) — f(ut) = A,(ut, UF)(u* — ut)
R, (5.17)

g(u®) — f(u") = A, (u", u")(w* — u).

Then choosing for each cell K a given edge A and using
the relations

> |Alvy =

AEoK

0. > lAlm=

AEdX

we can replace (5.16) by the expression which coincides with
(5.16) when (5.17) holds true,

Ar o o -
u}“ = E |AiA Euz’ unKJ;uz)(unwz u',':,ffz) Vi
IK AEIK
At 1/ o aent1i2
2 |A|A (TG, B — 00 vy,
|K| ACHK
(5.18)

where A® is a fixed edge of the boundary 3K.

Finally, the second-order accurate two-dimensional numeri-
cal scheme reads

ntl

Uy = u} - |K| 2 |A{¢VKA(H?(::§”2! ﬁ’l?‘l.:\'z
EISCLY
| KI LS | AIAL DR B @R — WD v (5.19)
AEIK
K K\ S A, @ B @ - TR v,
AEIK

6. TWO-DIMENSIONAL NUMERICAL RESULTS

We describe in this section the numerical computation in
two-dimensional geometry of two-phase fluid flows composed
of liquid droplets suspended in a gas phase. Obtaining a mean-
ingful description of such flows requires us to take into account
the convection processes, the mass, impulsion, and energy ex-
changes between the two phases and the breakup and coales-
cence of droplets. The convection terms are contained in system
(5.1) and we gave in Section 5 a way to discretize these equa-
tions. The latter phenomena are taken into account by algebraic
source terms that have to be added to the right-hand side of
(5.1). Since we are mainly interested in the construction of
accurate and robust methods for solving the convection pro-
cesses in sprays, we restrict ourselves to the most fundamental
exchange terms whose omission would lead to meaningless
results; we just consider the drag force and the breakup of
droplets that takes place when the relative velocity between
the two phases is large. We omit the mass and energy exchanges
(apart from the work of the drag force, of course) between the
two phases. This latter assumption is valid, provided that the
gas temperature T, and the liquid temperature 7, are equal and
below the boiling temperature of the liquid phase. (Anyway,
taking into consideration the vaporization of droplets can be
achieved very simply using a d” law, for instance; see [17].)

Following [18], we take for the drag force acting on a single
droplet the expression:

(6.1)

I
£, =~ Cop,r*u, — w|(u, —wy),

2

where r denotes the droplets radius and where the drag coeffi-
cient Cp is given by

24 (l += ! Rem) if Re = 1000
Cp={Re 6 (6.2)
0.424 if Re = 1000
and the droplets” Reynolds number Re is
Re = M (6.3)

Mg
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We insert respectively in the right-hand terms of Eqgs. (5.1.ii),
(5.1.i1), (5.1.vi), and (5.1.vii) the source terms I, I,, I,, and

J, given by
(B ()t
I, TN -

where n denotes the droplets’ number density.
We evaluate the droplet number density » by seolving the
equation

(6.4)

dnt + divinu) = ny,, (6.5)
where 7, stands for the production of droplets caused by droplet
breakup. (We omit in this analysis droplet collisions.) When a
droplet is exposed to a gas flow, the droplet may break if its
Weber number We is too large. This number is defined by

— Pg|“g —uf

We ,
a(Ty)

(6.6)

where u, and w, are respectively the velocities of the gas flow
and of the droplet, r is the radius of the droplet, p, is the gas
mass density, and « is the surface tension of the liquid—gas
interface. Many experiments (see [ 19]) and theoretical consider-
ations (see [20, 21]) have shown that a droplet exposed to a
gas flow explodes when its Weber number is larger than a
critical value We, which depends on the properties of the inter-
face. We took for the critical Weber number We, = 7. What
we obtain after the breakup of a single droplet is not clear.
Here we choose to use a model proposed in [22] after some
simplifications to predict the mean radius of the droplets ob-
tained after the breakup of a drop. In [22], the authors use the
following formula that gives the mean radius 7 of the obtained
droplets in a function of the radius r, of the original drop and
of the deformation velacity ¥, of the surface of the drop at the
time of the breakup:

- 7 lpﬂ"% s
3r_r‘/(3+8a(ﬂ)y‘)'

The value of the velocity of deformation of the surface of the
drop can be estimated using the computations in {21]. Indeed
we find after some computations that, provided the viscosity
effects are small (i.e. gi/a(T)pr <€ |, where g, is the liquid
phase viscosity), the deformation velocity at the time of the
breakup of the drop is approximately

1= V(a(T)/ pr}) 0.1266 We.

(6.7)

(6.8)

Inserting this latter estimate in (6.7), we get for the mean radius
of the droplets formed after the breakup of a drop with radins

r and Weber number We:

F=rl7 + daWel). (6.9)
Our model imposes that all drops found at a given location
have the same radius. We assume that when the Weber number
is larger than the critical Weber number at some given location,
every drop breaks up to given smaller drops, all of them having
the same radius given by (6.9). The production term in (6.5)
reads

. we)?
Fip = 11 [(7 +ka)) - I]H(We —We,), (6.10)

where H denotes Heavyside’s function. Indeed, after breakup,
the volume fraction of the liguid phase remains constant. Denot-
ing by ¥ the radius of the drops after breakup and by 7 their
number density, we have

47

l—a:?r

In order to avoid the computed droplet number density be-
coming less than zero, we use some formulations that were
introduced for the purpose of computational combustion in [16
or 22].

We compute the injection of a two-phase flow in a nozzle.
The boundary conditions are treated by solving a Riemann
problem. For each cell having an edge in the boundary of the
computational domain, we introduce an extra cell, a symmetric
relative to the boundary of the cell in the computational domain,
When the boundary is a wall, the mass densities, energies, and
droplet number density in this extra cell are the same as the
one in the symmetric cell. The gas and liquid phase velocities
in the extra cell are symmetric relative to the wall to the veloci-
ties in the cell of the computational domain. When the boundary
corresponds to the inlet or the outlet of the nozzle, we tmpose
the state in the extra cell: null velocity and very small pressures
and temperatures at the outlet; the gas and droplets are injected
at 200 ms™". The radius of droplets at the inletis r = 6 X 107 m.

Figure 9 shows the gas mass density contours; these contours
are very regular and have the same aspect as the contours
obtained in the absence of droplets. Figure 10 shows next the
void fraction contours in the whole computational domain and
a zoom near the upper wall; we note the presence of a boundary
layer. The droplets are dragged by the gas flow. However, the
inertia of the droplets causes a concentration of the liquid phase
in a sheet parallel to the upper wall in the region where the
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D41

FIG. 9. Gas mass density contours.

section of the nozzle decreases. In the same manner fewer
droplets are found in a layer parallel to the upper wall when
the nozzle section increases. Figures 11 and 12 respectively
show the gas phase and liquid phase velocity contours. In the
divergent part of the nozzle, two concurrent forces determine
the gas flow: the expansion of the gas tends to accelerate the

L9960

.9961

flow while the droplets tends to slow this flow. Indeed the gas
fiow drags the droplets and accelerates the whole mass of the
liquid phase, Note the boundary layer close to the upper wall
in the divergent part of the nozzle; the mass density of droplets
is less important in this layer so that the action of the drag
force is less important. Figure 13 gives the gas temperature

-993%6

9992

FIG. 10.  Void fraction contours.
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FIG. 10—Continued

contours. Finally, Fig. 14 gives the Mach number based on the
sound velocity in the two-phase medium. Indeed, the droplets
are assumed incompressible so that the compressibility of the
two-phase medium is the compressibility of the gas alone. The
mass density of the two-phase flow being p = ap, + (1 — o),
it is proven in [24] that the sound speed in the two-phase
medium is written:

cagn = Vypllap, + (1 — a)p) = ¢, Vap/(ap, + (1 — a)p).

We observe that the flow is sonic at the neck and supersonic
at the outlet. This proves that the presence of the droplets fairly
affects the gas flow which is slightly different from the flow
of a gas in a nozzle.

The Roe-type approximate Riemann solver we constructed

here gives very satisfactory results for both one-dimensional
and two-dimensional computations. Its computational cost is
comparable with the cost of the simplified method described
in [5 or 6].

CONCLUSION

We introduced a Roe-type approximate Riemann solver for
the numerical simulation of a hyperbolic system in nonconser-
vation form modeling two-phase fiuid flow. The Roe lineariza-
tion matrix is obtained as a perturbation of a simple matrix
whose eigenvalues and eigenvectors are explicitly known. The
numerical scheme gives very satisfactory results for both 1D
and 2D computations. Furthermore its computational cost is
comparable with other simplified methods.
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